A lattice of implicative extensions of regular Kleene's logics
نویسنده
چکیده
A b s t r a c t. The paper deals with functional properties of three-valued logics. We consider the family of regular three-valued Kleene's logics (strong, weak, intermediate) and it's extensions by adding an implicative connectives (" natural " implications). The main result of our paper is the lattice that describes the relations between implicative extensions of regular logics. In this paper we propose an original approach to a problem of relation between different three-valued logics. And the family of regular three-valued Kleene's logics is considered as the base for other three-valued logics. Keywords: three-valued logics, regular Kleene's logics, implication, extensions of regular logics, lattice of three-valued logics. Publikacja objęta jest prawem autorskim. Wszelkie prawa zastrzeżone. Kopiowanie i rozpowszechnianie zabronione. Publikacja przeznaczona jedynie dla klientów indywidualnych. Zakaz rozpowszechniania i udostępniania serwisach bibliotecznych
منابع مشابه
Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices
At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...
متن کاملEQ-logics with delta connective
In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...
متن کاملRelational groupoids and residuated lattices
Residuated structures are important lattice-ordered algebras both for mathematics and for logics; in particular, the development of lattice-valued mathematics and related non-classical logics is based on a multitude of lattice-ordered structures that suit for many-valued reasoning under uncertainty and vagueness. Extended-order algebras, introduced in [10] and further developed in [1], give an ...
متن کاملWeakly Implicative (Fuzzy) Logics I: Basic Properties
This paper presents two classes of propositional logics (understood as a consequence relation). First we generalize the well-known class of implicative logics of Rasiowa and introduce the class of weakly implicative logics. This class is broad enough to contain many “usual” logics, yet easily manageable with nice logical properties. Then we introduce its subclass— the class of weakly implicativ...
متن کاملMalinowski modalization, modalization through fibring and the Leibniz hierarchy
We show how various modal systems considered by Malinowski as extensions of classical propositional calculus may be obtained as fibrings of classical propositional calculus and corresponding implicative modal logics, using the fibring framework for combining logics of Fernández and Coniglio. Taking advantage of this construction and known results of Malinowski, we draw some useful conclusions c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reports on Mathematical Logic
دوره 47 شماره
صفحات -
تاریخ انتشار 2012